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Magnetic properties of a transverse spin-1 Ising model with 
random crystal-field interactions 
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Labomtoire de Magn&sme et Physique des Hautes Energies. DLpartement de Physique, 
Facult6 des Sciences, BP 1014, Rabat, Morocco 

Received 1 December 1993 

Abstract. We study the phase diagram and magnetic properties of a transverse spin-I king 
model with random longitudinal crystal-field interactions using an expansion technique foreluster 
identities of spin-I localized spin systems. Panially ordered phases appear for a particular hvo- 
valued distribution P ( D , )  = $[S(Di - (1 t m)D)  t 6 ( D ,  - (1 -c i )D)] ,  and sufficiently small 
-verse field R. The longitudinal and transverse magnetizations and the quadnrpolar moments 
are calculated. General formulae. applicable to svumres with arbitrary coordination number 
N. are given. 

1. Introduction 

Spin systems are widespread in very different fields of physics, e.g. in the theory of 
magnetism, superconductivity, nuclear physics, etc. Special methods of theoretical physics 
are needed to describe such systems, since the commutation relations for spin components 
differ from the corresponding relations in both Bose and Fermi systems. The study of phase 
transitions in the king and the Heisenberg models has been the subject of much interest [l- 
71. Phase diagrams of such models show various types of multicritical phenomena [3,4,7]. 
The king model in the presence of a transverse field serves for the study of cooperative 
phenomena and phase transitions in many physical systems [S-lo]. The diluted three- 
dimensional spin-I Ising model with crystal-field interactions has been studied by Saber 
[ l l ]  within the finite-cluster approximation. The spin-1 king model with a random crystal 
field has been studied by Benyoussef et ol [I21 and Boccara et al [13] within the mean- 
field solution. Our aim is to study the influence of the transverse magnetic field on the 
phase diagram and magnetic properties of the spin-1 king model with random crystal-field 
interactions. We use the finite-cluster approximation [14,15] with an expansion technique 
for cluster identities of spin-1 localized spin systems established by Ez-Zahraouy etal [16]. 
The phase diagram for coordination number N = 6 is represented in the T-0-D space for 
a fixed value of 01, where T ,  S2 and D are respectively temperature, transverse field and 
longitudinal crystal field. General formulae of the magnetizations and quadrupolar moments 
are determined for an a rb i t rq  coordination number N .  The dependence of longitudinal 
and transverse magnetizations on the crystal field for several values of the transverse field 
and on temperature for several values of the crystal field are calculated for N = 6. 

In section 2 we give the method and we calculate the state equations. Section 3 is 
reserved for results and discussion. 
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2. Finite-cluster approximation 

We consider a spin-1 king system in a simple cubic lattice described by a Hamiltonian 
corresponding to a paramagnet of the longitudinal-axis type in a transverse magnetic field 
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Here Si, and Stz are respectively the x component and the z component of spin-1 operator at 
site i ;  SZ represents the &aver se  field; Jij is the exchange interaction between spins at sites 
i and j ,  and in this paper J ~ J  is constant and equal to J ;  (ij) runs over all nearest-neighbour 
pairs of spins; and Dj is the random crystal field governed by the probability distribution 
law given by: 

P ( D i ) = i [ G ( D i  - ( ~ + c u ) D ) + ~ ( D ~ - ( ~ - L Y ) D ) ] .  

Using a singlesite cluster approximation in which attention is focused on a cluster 
comprising just a single selected spin labelled 0, and the neighbouring spins with which it 
directly interacts, the Hamiltonian containing 0 is written as 

Ho = AS& + BSox + DOS& (2 )  

where 

A - J B  B = - Q  (3 )  

with 
N 

e = sj,. 
j=l 

This single-site Hamiltonian can readily be diagonalized and its eigenvalues and 
eigenvectors found. The three eigenvectors corresponding to the eigenvalues 

hk = 2(Do PIt3 COS$Ik)/3 (4)  

$I& = 4 ~ 0 ~ - ' ( - 2 7 q / 2 p )  + 2(k - 1 ) ~ / 3  

p = -(Az + Bz) - 0,213 

with 

(5) 

(6) 

(7) 

p = (3&/2)(27q2 + [4p3  + 27q21)'" 

q = -Do(2A2 + 2 / 9 0 ;  + B 2 ) / 3  

are 

I~)k=LY~l+)+al-)+nlo) (8) 

with 

(9)  
IB@k - Do + A)I 

d ( B Z [ ( h k  - Do)' 4- A*] + [ ( A x  - 00)' - Az]2}'/2 
ak = 
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in a representation in which Soz is diagonal. The starting point of the single-site cluster 
approximation is a set of formal identities of the type 

Here Sk is the or component of the spin operator So raised to the power p ;  (S&), denotes 
the mean value of S& for a given configuration c of all other spins, i.e. when all other spins 
Si (i # 0) have fixed values; (. . .) denotes the average over all spin configurations; trace0 
means the *ace performed over So only; and p = l/kBT, T being the absolute temperature 
and kg the Boltzmann constant. The equations (1 1) are not exact for an king system in a 
transverse field, but they have, nevertheless, been accepted as a reasonable starting point 
in many studies of that system 1171. Let (Sk): and (S&): denote respectively the mean 
value of Sou and S& for a fixed configuration of the random crystal field and for a given 
configuration c for all other spins. 

To calculate (S0a)h and (S&):, one has to effect the inner traces in equations (1 1 )  over 
the states of the spin 0, and this is most easily performed using the eigenstates of equation (8) 
as the basis states. In this way. it follows, on setting p = 1 and 2 in equations (1 l), that 

where 

* 
f f : = L Y k  & = b k  Yk = Y k  h:=Ap whenDo=( l*a )D 

The magnetizations m, (or = z ,  x )  and the quadrupolar moments qu (a = z ,  x )  are given 
by: 

ma = ( f m  4. = ( d e ) )  
with 

f m  = $((sou),+ + (sd;) 
gde) = fccsk): + csk);) 

(16) 

(17) 

where (. . .) denotes the average over all configurations of the spins Sj, ( j  # 0). To calculate 
(f&3)) and (&(e)) we have used the expansion technique for spin-1 Ising systems as 
follows [14]. 
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Suppose one considers the general product n,"=l(d,=o SE), which contains 3N terms. 
From these terms one may collect together all those terms containing p factors of Sk and 
q factors of Si,. Such a group is to be denoted by {S:, S z ) N , p , q .  For example, if N = 4, 
p = l  andq=2, then  

2 
srl4.1.2 = Sl,(SZZS3Z + sZ?s4Z + S3rS4z) + &(slzs3z + slzs42 f Sks42) 

+ Sjl;(S1,Szr + SIZS, + SZZS4,) + s:z(s,2sZZ + SI,S3, + SZZS,,). (18) 

Our aim is to expand the functions of equations (16) and (17) in terms of these IS:, Sz)N,p,q. 
Thus, if one writes 

the problem is to find the coefficients A$)(N) and B g ) ( N ) .  To achieve this, it is 
advantageous to transform the spin-1 system to a spin-1/2 representation containing the 
Pauli operators uiZ = & I .  This may be accomplished by setting Si, = rjaujz with si, = 0, 1. 
In this representation, equations (19) and (20) become 

and must hold for arbitrary choices of sir. Suppose one now chooses the first r out of the 
N operators riz to be unity, and the remainder zero. Then equations (21) and (22) give 

(24) 

where {u~) , ,~  is the sum of all possible products of q spin operators ui2 out of a maximum 
of r ,  and the C; are the binomial coefficients m ! / n ! ( m  - n) ! .  That is, 
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with 

The spin-1 problem of equations (19) and (20) containing N spins has thus been 
transformed to a spin-l/2 problem containing r spins. The advantage of doing this is 
that it now enables one to use directly the results already established in [IS] for the spin- 
10 system. It may also be noted that, whereas the coefficients bp) ( r )  and d f ) ( r )  for the 
spin-1R problem depend on the total number of spins present, the coefficients A g ) ( N )  and 
B$)(N)  are in fact independent of N ,  as is clear from equations (27) and (28). Thus the 
label N is superfluous and may henceforth be dropped. This could, of course, have been 
inferred directly from equations (19) and (20) by setting one of the Siz spins equal to its 
zero value throughout. Specializing the results of [IS] to a single group of r spins, one has 
for the current problem 

where 

A&-) = f &  - 2 9  (32) 

gi&) = g d r  - 29. (33) 

Once the coefficients bp) ( r )  and d f ) ( r )  have been calculated, the coefficients A g )  and 
BE) may be found by the following procedure. First, A$) and B,$) are obtained by setting 
r = q in equations (29) and (30). That is 

A$) = bpl(p) B$) = dF’(q). (34) 

Then, the other A&) and BE) may be obtained by expressing equations (29) and (30) as a 
recurrence relation, namely as 

p=O 
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Then the magnetizations m, (or = z, x )  and the quadrupolar moments qa (or = z ,  x )  are 
given for an arbitmy coordination number N by 
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Using the simplest approximation of the Zemike decoupling of the type 

( S i J j , .  . . Sh . . .) ( S i z ) ( S j z ) .  . . (SJ.. . 

and seeing that the number of elements of the group IS:, S J N . ~ . ~  is equal to C;C;-', 
equations (37) and (38) become 

for i # j # k # . . 

N N - q  m , = x x ~ (  P9 4 m 9 L Z  q P C N C N - P  P 4 (39) 
9- P=o 

q=o p=o 

Let us put m = mz = (S,) and x = qr = (S:), and if we replace x in (39) by its expression 
taken from (40). we obtain an equation for m of the form 

m =am + bm3 + ... (41) 

where 

with xo the solution of 

The critical temperature of the second-order &ansition is determined by a = 1. In the 
vicinity of a second-order transition the magnetization m, is determined by 

m: = (1 - a ) / b .  (44) 

At this temperahre the transverse magnetization is given by 



Transverse spin-l king model 3417 

Figure 1. Phase diagram in T-% 
correspond to fist-order transition. 

space N =  

and the quadrupolar moments qm (a = z, x )  are given by 

ICL is U i C r i  line. Broken curves 

The right-hand side of equation (443 must be positive. If this is not the case the transition 
is of first order. The point at which a = 1 and b = 0 is the tricritical point. To obtain the 
expression for b one has to solve (40) for small m. The solution is of the form 

x = i o + x ~ m  2 (47) 

where XI is given by 
N - 2  N 

P=o p=1 

XI = XB,, ( Z ) C N C N - Z ~ P  + C p B $ C : x ( - ' x i .  (48) 

That is 
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Figure 2 (0)  The crystal-field dependence of he longitudinal magnetization when T J J  = 0.1. 
The number accompanying each cume denotes the value of Q / J .  (b )  The temperature 
dependence of the longitudinal magnetization when Q l J  = 0.2. The number accompanying 
each curve denotes ule value of D j J .  

This yields 

3. Results and discussion 

In this section we present results of the Hamiltonian (1) on a simple cubic lattice ( N  = 6). 
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DIJ 
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0.02 
0 1 2 3 4 5 

TIJ 
F i  3. (a) The crystal-field dependence of lhe transverse magnetization when T j J  = 0.1. 
The number accompanying each curve denotes Lhe value of S2JJ. (b)  The tempemure 
dependence of the transverse magnetization when njJ = 0.2. The number accompanying 
each curve denotes the value of O / l .  

The study of the phase diagram in the T-S2-D space yields three different situations 
depending on the value of 01 [13]; hereafter we shall consider a caSe (a = 3/4) in which the 
partially ordered phases exist. The resulting phase diagram is shown in figure 1, where on 
one part there exists a tricritical line (m) separating the surfaces of second- and first-order 
transitions, and on the other part there exists a first-order surface transition separating the 
ordered phases and the partially ordered phases; this surface exists at lower temperature and 
!2 i a,. The dependences of the magnetizations m, and m, on the crystal field for a fixed 
value of the temperature (T/J = 0.1) and a = 3/4 are shown respectively in figures ?.(a) 
and 3(u) for several values of the kansverse field R. A first-order transition is characterized 
by a gap in the longitudinal magnetization m, at the crystal-field transition. Hence, for 
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Q < 0, and for sufficiently low temperature, in figure x u )  (and for Q / J  = 0.01), we have 
two first-order transitions: one is from the ordered phase (mz = 1) to the partially ordered 
phases (m, = 1/2), and the other is from the partially ordered phases to the disordered one. 
Such transitions are also observed in figure 3(a), in which the transverse magnetization 
passes through a peak for first-order transitions (figure 3(u) for Q = 0.2, 0.3, 0.5) and a 
shoulder for the second-order transition. The transverse magnetization m, increases when 
increasing the transverse field S?. at low temperature, in agreement with [191, while the 
magnetization mz decreases with Q. On the other hand, For fixed value of a, m, decreases 
continuously in the. vicinity of the transition temperature and vanishes at T = &, for the 
second-order transition, and exhibits a discontinuity at the first-order transition (figure 2(b),  
D / J  = 5.6, 5.5, 2.6). The transverse magnetization m, increases with the strength of the 
crystal field at low temperature and passes through a peak for the first-order transition and 
a cusp for the second-order transition temperature of mz and then falls o f f  rapidly (see 
figure 3(b)) as determined by the relation (45). Finally we remark that the method used 
here [16] allows us to see the re-entrant part observed in figure 2(b) ( D / J  = 5.5, 5.6); such 
a phenomenon is not observed within mean-field theory [I31 for Q / J  = 0. 
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