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Abstract. We study the phase diagram and magnetic properties of a transverse spin-1 Ising
mode! with random longitudinal crystal-field interactions using an expansjon technique for cluster
identities of spin-1 localized spin systems. Partially ordered phases appear for a particular two-
valued distribution P(D,) = %[S(D,- — {1+ o)D)+ 8(D, — (1 — «).D}}, and sufficiently small
transverse field £2. The longitudinal and transverse magnetizations and the quadrupolar moments
are calculated. General formulae, applicable to structures with arbitrary coordination number
N, are given.

1. Introduction

Spin systems are widespread in very different fields of physics, e.g. in the theory of
magnetism, superconductivity, nuclear physics, etc. Special methods of theoretical physics
are needed to describe such systems, since the commutation relations for spin components
differ from the corresponding relations in both Bose and Fermi systems. The study of phase
transitions in the Ising and the Heisenberg models has been the subject of much interest [1-
7). Phase diagrams of such models show various types of multicritical phenomena [3,4,71.
The Ising model in the presence of a transverse field serves for the study of cooperative
phenomena and phase transitions in many physical systems [8-10]. The diluted three-
dimensional spin-1 Ising model with crystal-ficld interactions has been studied by Saber
[11] within the finite-cluster approximation. The spin-1 Ising model with a random crystal
field has been studied by Benyoussef et af [12] and Boccara et al [13] within the mean-
field solution. Our aim is to study the influence of the transverse magnetic field on the
phase diagram and magnetic properties of the spin-1 Ising model with random crystal-field
interactions. We use the finite-cluster approximation [14, 15] with an expansion technique
for cluster identities of spin-1 localized spin systems established by Ez-Zahraouy er al [16].
The phase diagram for coordination number N = 6 is represented in the T-Q-D space for
a fixed value of «, where T, £2 and D are respectively temperature, transverse field and
longitudinal crystal field. General formulae of the magnetizations and quadrupolar moments
are determined for an arbitrary coordination number N. The dependence of longitudinal
and transverse magnetizations on the crystal field for several values of the transverse field
and on temperature for several values of the crystal field are calculated for N = 6.

In section 2 we give the method and we calculate the state equations. Section 3 is
reserved for results and discussion.
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2. Finite-cluster approximation

We consider a spin-1 Ising system in a simple cubic lattice described by a Hamiltonian
corresponding to a paramagnet of the longitudinal-axis type in 2 transverse magnetic field:

==Y JiSuSip—RY Su+y DiS (1
i) i i

Here S;, and §;, are respectively the x component and the z component of spin-1 operator at

site {; §2 represents the transverse field; J;; is the exchange interaction between spins at sites

i and j, and in this paper Ji; is constant and equal to J; {i§} runs over all nearest-neighbour

pairs of spins; and D; is the random crystal field governed by the probability distribution

law given by:

P(D;) = 5[8(Di = (1+ @)D) + &(D; — (1 — &)D)].

Using a single-site cluster approximation in which attention is focused on a cluster
comprising just a single selected spin labelled @, and the neighbouring spins with which it
directly interacts, the Hamiltonian containing 0 is written as

Hy = ASo, + BSox + DoS3, 2}
where
=-J@ B=-Q (3}
with
N
9="> 5.
=1

This single-site Hamiltonian can readily be diagonalized and iis eigenvalues and
eigenvectors found. The three eigenvectors corresponding to the eigenvalues

M = 2(Dg + o' cos ) /3 4)
with

$r = § cos™1(~27q/2p) + 20k — 1)m/3 : (5)

p = (3V3/Q274 + |4p® + 218*) "/ 6)

p=—(A"+BY - D3/3 g = —Do(24% + 2/9D% + BH/3 (N
are

W) = el +} + Bel—} + w0} (8
with

o = |B(Ax ~ Do + A)l ©)

V2{B (A — Do)? ++ A2] + [(A — Do)? — A2}1/2
=P Zw n= g(hk — Do — A)oy (10)
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in a representation in which Sy, is diagonal. The starting point of the single-site cluster
approximation is a set of formal identities of the type

traceo[Sgd exp("‘.BHo)]> (p =17 a=ux Z). (11

Py
Whalel ( traceolexp(— B Ho)]
Here S5, is the o component of the spin operator Sp raised to the power p; (S5} denotes
the mean value of S§, for a given configuration ¢ of all other spins, 1.e. when all other spins
5; (i ¥ 0) have fixed values; {...} denotes the average over all spin configurations; traceg
means the trace performed over Sy only; and 8 = 1/kgT, T being the absolute temperature
and kg the Boltzmann constant. The equations (I11) are not exact for an Ising system in a
transverse field, but they have, nevertheless, been accepted as a reasonable starting point
in many studies of that system [17]. Let {Sg,}¥ and (SZ)E denote respectively the mean
value of So, and S2, for a fixed configuration =+ of the random crystal field and for a given
configuration ¢ for all other spins.

To calculate {Soe)% and {S2,)E, one has to effect the inner traces in equations (11) over
the states of the spin 0, and this is most easily performed using the eigenstates of equation (8)
as the basis states. In this way, it follows, on setting p = 1 and 2 in equations (11), that

3 3
(So)E = ) [ — (B exp(—BAy) / D _exp(=BA) (12)
k=1 k=1
3 3
(Soe)E = V2 (it + BE)vi exp(—BA) / D exp(=BA;) (13)
k=1 k=1
3 3
(S5YE = Iy + (B Texp(— BAT) / > exp(—BAp) (14)
k=1 k=1

3 3
(S50 = ) Iy + BEV/2 + (v lexp(- i) / Y exp(-BAY)  (13)
k=1 k=1

crf = @y, ,3:: = B }/k:b =¥ J\.ki = Ap when Do = (1 £ a)D.

The magnetizations m, (¢ = z, x) and the quadrupolar moments g, (& = z, x) are given
by:

Ma = {fa(®) G = (ga(®))
with

£2®) = L{(Soa)? + {Soa}?) (16)

£(8) = JUSEIT + (S5)) an

where (...) denotes the average over all configurations of the spins S;; (7 # (). To calculate
{fx(8)} and {g,(¢)) we have used the expansion technique for spin-1 Ising systems as
follows [14].
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Suppose one considers the general product [T/, (3% _, S5), which contains 3" terms.
From these terms one may collect together all those terms containing p factors of S;"z and
g factors of S;;. Such a group is to be denoted by {S?, S;}n,pq- For example, if N = 4,
p=1and g =2, then

{82, S;Ya12 = S5 (8253 + 5284z + S3:542) + 82,8123 + S1288, + S35,
+ 82, (S1252 + S12S4; + S2:54,) + S, (81,52 + 51153 + 52,53,)- (18)

Our aim is to expand the functions of equations (16) and (17) in terms of these {SZ, S;}v,p.q-
Thus, if one writes

N
fa(z ) ZZA‘“’W)  SeIN.pg (19)

g=0 p=0

N N N—g
ga(Zsu) 33 BN Sl pg (20)

q=0 p=0

the problem is to find the coefficients A®(N) and BE)(N). To achieve this, it is
advantageous to transform the spin-1 system to a spin-1/2 representation containing the
Pauli operators o;, = 1. This may be accomplished by setting 5;, = 1;,0;, with 7;;, =0, 1.
In this representation, equations {19) and (20) become

N N N-gq

fa(Z r,vza.-z) =33 ABNG, .07)w.pg @1
i=1 g=0 p=0
N N N—g

ga(z r,-zcn-z) =33 BOMN){n. uouln.pa (22)
i=] g=0 p=0

and must hold for arbitrary choices of 7;,. Suppose one now chooses the first r out of the
N operators 1;; to be unity, and the remainder zero. Then equations (21) and (22) give

r rr—q
fa(Za,-z) =y Y ADMNCI o), (23)

i=1 g=0 p=0

r r r—q
gu(Za,-z) =YY BOMNC#{oyh, (24)

i=1 =0 p=0

where {0,}, 4 is the sum of all possible products of ¢ spin operators o;; out of a maximum
of r, and the C7 are the binomial coefficients m!/n!(m — #)!. That s,

fa ( Z Ur'z) = Z ng) (rHo:z}rg (25}
i=1 g=0

8a ( > cr;z) = df ) oghng (26)
i=1 g=0
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with
r-gq
by =) ARNYC,E 27)
p=0
r—g
d®(ry =Y BON)CI™. (28)
p_

The spin-1 problem of equations (19} and (20) containing N spins has thus been
transformed to a spin-1/2 problem containing r spins. The advantage of doing this is
that it now enables one to use directly the results already established in [18] for the spin-
1/2 system. It may also be noted that, whereas the coefficients 5{”(r) and d{®(r) for the
spin-1/2 problem depend on the total number of spins present, the coefficients A};?(N ) and
B!E"‘)(N) are in fact independent of N, as is clear from equations (27) and (28). Thus the
label N is superfluous and may henceforth be dropped. This could, of course, have been
inferred directly from equations (19) and (20) by setting one of the §;; spins equal to its
zero value throughout. Specializing the results of [18] to a single group of r spins, one has
for the current problem

BP0 = 5 C, ZC'e. (@) fralr) (29)
Ay = 5oz 3 - Clenr, 9)gialr) (30)
q =0
where
g(ng) =Y (-DFCLCITL 31
u=0
fa(r) = falr —20) (32)
8ialr) = galr — 2i). (33)

Once the coefficients 5 (r) and d{(r) have been calculated, the coefficients A% and

B{?) may be found by the following procedure First, A("‘J and B("’) are obtained by setting
r = g in equations (29) and (30). That is

AR =00 By =dP(). (34)

Then, the other A% and B may be cbtained by expressing equations (29) and (30) as a
recurrence rclahon namcly as

roge=1

A,(.“_)q = b;a) ) — Z Ag;)C;—q (35
p=0
r—g—1i

B,Sci)qq — dé"’)(r) - Z B},?C;—q- (36)

p=0
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Then the magnetizations m, (o = z,x) and the guadrupolar moments g, (v = z,x) are
given for an arbitrary coordination number N by

N N—g
=y Z ADISE, S.hN,pg) 37
_0
N N-—g
da=)_ 3 BOUS, S.Ynpa) (38)
g=0 p=0

Using the simplest approximation of the Zernike decoupling of the type
{SiSjz -+ Sz -+ ) = {Sizd (Spzd .+ (S - - fori#j#k#...

and seeing that the number of elements of the group {57, S;}wp.q is equal to C;:" C,?r o,
equations (37) and (38) become

= Z Z ADmigrc)cl-r (39)
g=0 p=0
N N—gq

Ga= Y.y BOmigrc)cl-r. (40)
g=0 p=0

Letusputm =m, = (S;} and x = g, = (Sf), and if we replace x in (39) by its expression
taken from (40), we obtain an equation for m of the form

m=am+bm> 4 ... (41)

where

(A((Jzi) + ZA(Z)CN 1 ) (42)
=1

with xy the solution of
(z) + Z B(z)CN 43)

The critical temperature of the second-order transition is determined by ¢ = 1. In the
vicinity of a second-order transition the magnetization m, is determined by

m2 = (1 —a)/b. (44)

At this temperature the transverse magnetization is given by

my = Z BRCYxE 45)
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T f

Figure 1. Phase diagram in T-§~£ space for N = 6. TCL is the tricritical line. Broken curves
correspond to first-order transition.

and the quadrupolar moments g, (& = z, x) are given by

Qo = Z BYCHxL. (46)
p=0

The right-hand side of equation (44) must be positive. If this is not the case the transition
is of first order. The point at which & = 1 and & = 0 is the tricritical point. To obtain the
expression for b one has to solve (40) for small m. The solution is of the form

x = i+ xym? (47

where x; is given by
0= ZB(Z) YT 2xE + Z pBYCY b 1. (48)
That is

ZB(Z) NCN 2 P/( iPB(ZJchDP—I)_ (49)

p=l1
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(e)

(6)

Figure 2. (@) The crystal-field dependence of the longitudinal magnetization when I'/J = 0.1.
The number accompanying each curve denofes the value of ©/J. (&) The temperature
dependence of the longitudinal magnetization when §/J = 0.2. The number accompanying
each curve denotes the value of D/fJ.

This yields

N=3
b=y AQCICI3f + N Z pASICN=1xP=1x,. (50)

3. Results and discussion

In this section we present results of the Hamiltonian (1) on a simple cubic lattice (N = 6).
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Figure 3. (a) The crystal-field dependence of the transverse magnetization when T/J = 0.1.
The aumber accompanying each curve denotes the valwe of R/J. (&) The temperature
dependence of the transverse magnetization when $2/J = (.2, The number accompanying
each curve denotes the value of D//J.

The study of the phase diagram in the T-$2-D space yields three different situations
depending on the value of o [13]; hereafter we shall consider a case (¢ = 3/4) in which the
partially ordered phases exist. The resulting phase diagram is shown in figure 1, where on
one part there exists a tricritical line (TCL) separating the surfaces of second- and first-order
transitions, and on the other part there exists a firsi-order surface transition separating the
ordered phases and the partially ordered phases; this surface exists at lower temperature and
© < §2,. The dependences of the magnetizations m; and s, on the crystal field for a fixed
value of the temperature (T/J = 0.1) and o = 3/4 are shown respectively in figures 2(a)
and 3(a) for several values of the transverse field 2. A first-order transition is characterized
by a gap in the longitudinal magnetization m, at the crystal-field transition. Hence, for
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2 < ©,; and for sufficiently low temperature, in figure 2(a) (and for 2/J = 0.01), we have
two first-order transitions: one is from the ordered phase (s, = 1) to the partially ordered
phases (m, = 1/2), and the other is from the pariially ordered phases to the disordered one.
Such transitions are also observed in figure 3(q), in which the transverse magnetization
passes through a peak for first-order transitions (figure 3{a) for & = 0.2, 0.3, 0.5) and a
shoulder for the second-order transition. The transverse magnetization m; increases when
increasing the transverse field €2 at low temperature, in agreement with {19], while the
magnetization m, decreases with £2. On the other hand, for fixed value of £2, m, decreases
continuously in the vicinity of the transition temperature and vanishes at T = Tg, for the
second-order transition, and exhibits a discontinuity at the first-order transition (figure 2(b),
D}J = 5.6, 5.5, 2.6). The transverse magnetization m, increases with the strength of the
crystal field at low temperature and passes through a peak for the first-order transition and
a cusp for the second-order transition temperature of m, and then falls off rapidly (see
figure 3(b)) as determined by the relation (45). Finally we remark that the method used
here [16] altows us to see the re-entrant part observed in figure 2(b) (D/J = 5.5, 5.6); such
a phenomenon is not observed within mean-field theory [13] for £2// = 0.
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